SEBUAH BLOG YANG PASTINYA TIDAK SESEMPURNA YANG ANDA BAYANGKAN.
Alvi Yasin M;Buat Lencana Anda
Senin, 12 November 2012
KOMPAS BIDIK, KOMPAS GEOLOGI, ABNEY LEVEL, GPS, STEREO
1. KOMPAS BIDIK
Dikenal sebagai kompas bidik karena kompas ini dapat digunakan untuk mencari sudut dengan cara membidik. Kompas ini yang umumnya digunakan oleh anggota pramuka dalam materi kompas dan peta.
BAGIAN KOMPAS BIDIK
Kompas bidik memiliki bagian-bagian sebagai berikut:
1. Dial, adalah permukaan Kompas dimana tertera angka derajat dan huruf mata angin.
2. Visir, adalah lubang dengan kawat halus untuk membidik sasaran.
3. Kaca Pembesar, digunakan untuk melihat derajat Kompas.
4. Jarum Penunjuk adalah alat yang menunjuk Utara Magnet.
5. Tutup Dial dengan dua garis bersudut 45o yang dapat diputar.
6. Alat Penyangkut adalah tempat ibu jari untuk menopang Kompas saat membidik.
PENGERTIAN AZIMUTH
Azimuth adalah sudut antara satu titik dengan arah utara dari seorang pengamat. Azimuth disebut juga sudut kompas. Jika anda membidik sebuah tanda medan, dan memperolah sudutnya, maka sudut itu juga bisa dinamakan sebagai azimuth. Kebalikannya adalah back azimuth. Dalam resection back azimuth diperoleh dengan cara:
1. Jika azimuth yang kita peroleh lebih dari 180º maka back azimuth sama dengan azimuth dikurangi 180º. Misal anda membidik tanda medan, diperoleh azimuth 200º. Back azimuthnya adalah 200º - 180º = 20º.
2. Jika azimuth yang kita peroleh kurang dari 180º, maka back azimuthnya dama dengan 180º ditambah azimuth. Misalkan, dari bidikan terhadap sebuah puncak, seiperoleh azimuth 160º, maka back azimuthnya adalah 180º + 160º = 340º.
PENGERTIAN BEARING
Arah kelurusan (Bearing) adalah jurus dari bidang vertikal yang melalui garis tetapi tidak menunjukan arah penunjaman garis tersebut (menunjukkan arah – arah dimana, salah satu arahnaya merupakan sudut pelurusnya).
Pengukuran Bearing :
1. Arah visir kompas sejajar dengan unsur-unsur kelurusan struktur garis yang akan diukurmisalnya sumbu memanjang fragmen breksi sesar.
2. Levelkan kompas (nivo mata sapi dalam keadaan horisontal), dan membuat harga yang ditunjuk oleh jarum utara kompas adalah harga arah "Bearing"-nya.
PENGERTIAN GEOGRAFIS
Letak geografis adalah letak suatu daerah dilihat dari kenyataannya.
Gambar untuk azimuth dan bearing : Gambar untuk azimuth :
2. KOMPAS GEOLOGI
Kompas geologi banyak macamnya, di antaranya tipe Azimuth dan tipe Kuadran. Tipe Azimuth punya skala dari 0-360°, sedangkan tipe Kuadran punya 4 kuadran yang masing-masing besarnya 90°. Kompas geologi yang biasa dipakai di Indonesia biasanya tipe Azimuth. Kompas, klinometer, dan “hand level” merupakan alat-alat yang dipakai dalam berbagai kegiatan survei, dan dapat digunakan untuk mengukur kedudukan unsur-unsur struktur geologi. Kompas geologi merupakan kombinasi dari ketiga fungsi alat tersebut.
BAGIAN KOMPAS GEOLOGI
Bagian-bagian utama kompas geologi yang terpenting diantaranya adalah :
1. Jarum magnet
Ujung jarum bagian utara selalu mengarah ke kutub utara magnet bumi (bukan kutub utara geografi). Oleh karena itu terjadi penyimpangan dari posisi utara geografi yang kita kenal sebagai deklinasi. Besarnya deklinasi berbeda dari satu tempat ke tempat lain. Agar kompas dapat menunjuk posisi geografi yang benar maka “graduated circle” harus diputar.
Penting sekali untuk memperhatikan dan kemudian mengingat tanda yang digunakan untuk mengenal ujung utara jarum kompas itu. Biasanya diberi warna (merah, biru atau putih).
2. Lingkaran pembagian derajat (graduated circle)
Dikenal 2 macam jenis pembagian derajat pada kompas geologi, yaitu kompas Azimuth dengan pembagian derajat dimulai 0o pada arah utara (N) sampai 360o, tertulis berlawanan dengan arah perputaran jarum jam dan kompas kwadran dengan pembagian derajat dimulai 0o pada arah utara (N) dengan selatan (S), sampai 90o pada arah timur (E) dan barat (W).
3. Klinometer
Yaitu bagian kompas untuk mengukur besarnya kecondongan atau kemiringan suatu bidang atau lereng. Letaknya di bagian dasar kompas dan dilengkapi dengan gelembung pengatur horizontal dan pembagian
Menyesuaikan Inklinasi dan Deklinasi
Sebelum kompas digunakan di lapangan, hendaknya diperiksa dahulu apakah inklinasi dan deklinasinya telah disesuaikan dengan keadaan tempat pekerjaan.
o Inklinasi
Inklinasi adalah kecondongan jarum kompas yang disebabkan oleh perbedaan letak geografi suatu daerah terhadap kutub bumi. Sudut kecondongan akan hampir 0 (horizontal) apabila kita berada di dekat/di sekitar equator, dan semakin bertambah besar apabila mendekati kutub-kutub bumi. Dengan demikian, maka tiap tempat di atas bumi ini akan mempunyai sudut inklinasi yang berbeda-beda.
Pada dasarnya, sebelum kompas geologi itu dapat digunakan dengan baik, kedudukan jarum harus horizontal. Untuk itu bisa digunakan beban (biasanya ada) yang dapat digeser sepanjang jarum kompas
o Deklinasi
Deklinasi adalah sudut yang dibentuk oleh arah utara jarum kompas dan arah utara sebenarnya (Utara geografi), sebagai akibat dari tidak berimpitnya titik utara magnit dan titik utara geografi.
Besarnya deklinasi di suatu daerah umumnya ditunjukkan pada peta topografi daerah tersebut. Untuk menyesuaikan agar kompas yang akan dipakai menunjukkan arah utara yang sebenarnya, lingkaran derajat pada kompas harus digeser dengan cara memutar “adjusting screw” yang terdapat pada sisi kompas sebesar deklinasi yang disebutkan
Deklinasi di suatu daerah adalah 15o West.
Artinya, utara magnetik berada 15o sebelah barat dari utara geografi. Dalam hal ini lingkaran derajat harus diputar, sehingga index akan menunjuk pada angka 15o sebelah barat titik 0o.
PENGGUNAAN KOMPAS GEOLOGI
Untuk mengukur strike:
1. Carilah bidang batuan yang agak rata (agar lebih rata, kamu bisa memakai papan clipboard sebagai alas).
2. Tempelkan sisi W (WEST) badan kompas ke bidang batuan dengan lengan kompas searah strike.
3. Geser-geserlah sampai gelembung udara pada level bulat (bull's eye level) tepat di tengah.
4. baca derajat yang ditunjukkan jarum utara (yaitu jarum yang menunjuk ke utara ketika kamu menghadap utara).
Untuk mengukur dip:
1. Tempelkan sisi E (EAST) badan kompas ke bidang batuan dengan lengan kompas tegak lurus strike.
2. di bagian belakang kompas ada tuas kecil untuk memutar level tabung (clinometer level). Putarlah level tabung sampai gelembung tepat di tengah.
3. baca derajat yang ditunjukkan derajat klinometer (ingat, derajat dip maksimal 90 derajat).
3. ABNEY LEVEL
Abney level digunakan untuk mengukur kemiringan lahan. Dapat juga untuk mengukur ketinggian benda seperti pohon, rumah, dan sebagainya. Penggunaan clinometer lebih praktis daripada penggunaan abney level karena, sebab surveyor hanya tingggal membaca besaran sudut atau kemiringan lahan tersebut dalam dua macam satuan, yaitu derajat dan persentase.
PENGGUNAAN ABNEY LEVEL
Untuk cara penggunaan clinometer hampir sama dengan kompas, yaitu mata yang kanan melihat skala clinometer, sedangkan mata kiri menuju objek. Kedua mata membidik sasaran dalam posisi sejajar. Selain digunakan untuk mengukur besarnya lereng dalam dua satuan, yaitu derajat (skala kiri) dan persentase (skala kanan), clinometer ini juga digunakan untuk mengukur tinggi pohon, bangunan atau objek-objek yang lainnya (Abdullah, 1993).
BAGIAN BAGIAN ABNEY LEVEL
Penyipat abney terdiri atas tabung bidik berpenampang segi empat, panjangnya 127 mm, dilengkapi dengan tabung teleskop yang mencapai panjang 178 mm. Tabung teleskop dilengkapi dengan lubang bidik pada ujung bidik dan benang silang garis horizontal, sehingga lengkaplah susunan pembidikan.
Pada tabung bidik empat persegi panjang disekrupkan busur setengah lingkaran berskala derajat dibaca dengan nonius. Pada sumbu busur dipasang suatu nino spiritus. Dalam tabung bidik dipasang cermin yang membentuk sudut 450 dengan garis bidik, yang memungkinkan pengamat melihat secara serentak nivo spiritus melalui cermin dan target di tempat yang jauh pada benang silang. Untuk mengatur sudut kemiringan, penyipat abney ditempatkan pada mata sedemikian rupa sehingga gelembung nivo terlihat pada cermin. Tabung bidik dimiringkan unutk mengamati stasiun depa n, dan dengan menggerakkan sekrup pengontrol nivo secara lambat (Irvine, 1995).
4. GPS ( GLOBAL POSITIONING SYSTEM)
GPS (Global Positioning System) adalah sistem satelit navigasi dan penentuan posisi yang dimiliki dan dikelola oleh Amerika Serikat. Sistem ini didesain untuk memberikan posis dan kecepatan tiga-dimensi serta informasi mengenai waktu, secara kontinyu di seluruh dunia tanpa bergantung waktu dan cuaca, bagi banyak orang secara simultan. Saat ini GPS sudah banyak digunakan orang di seluruh dunia dalam berbagai bidang aplikasi yang menuntut informasi tentang posisi, kecepatan, percepatan ataupun waktu yang teliti. GPS dapat memberikan informasi posisi dengan ketelitian bervariasi dari beberapa millimeter (orde nol) sampai dengan puluhan meter.
KEMAMPUAN GPS
Beberapa kemampuan GPS antara lain dapat memberikan informasi tentang posisi, kecepatan, dan waktu secara cepat, akurat, murah, dimana saja di bumi ini tanpa tergantung cuaca. Hal yang perlu dicatat bahwa GPS adalah satu-satunya sistem navigasi ataupun sistem penentuan posisi dalam beberapa abad ini yang memiliki kemampuan handal seperti itu. Ketelitian dari GPS dapat mencapai beberapa mm untuk ketelitian posisinya, beberapa cm/s untuk ketelitian kecepatannya dan beberapa nanodetik untuk ketelitian waktunya. Ketelitian posisi yang diperoleh akan tergantung pada beberapa faktor yaitu metode penentuan posisi, geometri satelit, tingkat ketelitian data, dan metode pengolahan datanya.
PRODUK YANG DIBERIKAN GPS
Secara umum produk dari GPS adalah posisi, kecepatan, dan waktu. Selain itu ada beberapa produk lainnya seperti percepatan, azimuth, parameter attitude, TEC (Total Electron Content), WVC (Water Vapour Content), Polar motion parameters, serta beberapa produk yang perlu dikombinasikan dengan informasi eksternal dari sistem lain, produknya antara lain tinggi ortometrik, undulasi geoid, dan defleksi vertikal.
SEGMEN PENYUSUN SISTEM GPS
Secara umum ada tiga segmen dalam sistem GPS yaitu segmen sistem kontrol, segmen satelit, dan segmen pengguna.
Satelit GPS dapat dianalogikan sebagai stasiun radio angkasa, yang diperlengkapi dengan antena-antena untuk mengirim dan menerima sinyal –sinyal gelombang. Sinyal-sinyal ini selanjutnya diterima oleh receiver GPS di/dekat permukaan bumi, dan digunakan untuk menentukan informasi posisi, kecepatan, maupun waktu. Selain itu satelit GPS juga dilengkapi dengan peralatan untuk mengontrol attitude satelit. Satelit-satelit GPS dapat dibagi atas beberapa generasi yaitu ; blok I, blok II, blok IIA, blok IIR dan blok IIF. Hingga april 1999 ada 8 satelit blok II, 18 satelit blok II A dan 1 satelit blok II R yang operasional.
Secara umum segmen sistem kontrol berfungsi mengontrol dan memantau operasional satelit dan memastikan bahwa satelit berfungsi sebagaimana mestinya
Segmen pengguna terdiri dari para pengguna satelit GPS di manapun berada. Dalam hal ini alat penerima sinyal GPS ( GPS receiver ) diperlukan untuk menerima dan memproses sinyal -sinyal dari satelit GPS untuk digunakan dalam penentuan posisi, kecepatan dan waktu. Komponen utama dari suatu receiver GPS secara umum adalah antena dengan pre-amplifier, bagian RF dengan pengidentifikasi sinyal dan pemroses sinyal, pemroses mikro untuk pengontrolan receiver, data sampling dan pemroses data ( solusi navigasi ), osilator presisi , catu daya, unit perintah dan tampilan, dan memori serta perekam data.
PRINSIP PENENTUAN POSISI DENGAN GPS
Prinsip penentuan posisi dengan GPS yaitu menggunakan metode reseksi jarak, dimana pengukuran jarak dilakukan secara simultan ke beberapa satelit yang telah diketahui koordinatnya. Pada pengukuran GPS, setiap epoknya memiliki empat parameter yang harus ditentukan : yaitu 3 parameter koordinat X,Y,Z atau L,B,h dan satu parameter kesalahan waktu akibat ketidaksinkronan jam osilator di satelit dengan jam di receiver GPS. Oleh karena diperlukan minimal pengukuran jarak ke empat satelit.
TIPE ALAT ( RECEIVER) GPS
Ada 3 macam tipe alat GPS, dengan masing-masing memberikan tingkat ketelitian (posisi) yang berbeda-beda. Tipe alat GPS pertama adalah tipe Navigasi (Handheld, Handy GPS). Tipe nagivasi harganya cukup murah, sekitar 1 – 4 juta rupiah, namun ketelitian posisi yang diberikan saat ini baru dapat mencapai 3 sampai 6 meter. Tipe alat yang kedua adalah tipe geodetik single frekuensi (tipe pemetaan), yang biasa digunakan dalam survey dan pemetaan yang membutuhkan ketelitian posisi sekitar sentimeter sampai dengan beberapa desimeter. Tipe terakhir adalah tipe Geodetik dual frekuensi yang dapat memberikan ketelitian posisi hingga mencapai milimeter. Tipe ini biasa digunakan untuk aplikasi precise positioning seperti pembangunan jaring titik kontrol, survey deformasi, dan geodinamika. Harga receiver tipe geodetik cukup mahal, mencapai ratusan juta rupiah untuk 1 unitnya.
SINYAL DAN BIAS PADA GPS
GPS memancarkan dua sinyal yaitu frekuensi L1 (1575.42 MHz) dan L2 (1227.60 MHz). Sinyal L1 dimodulasikan dengan dua sinyal pseudo-random yaitu kode P (Protected) dan kode C/A (coarse/aquisition). Sinyal L2 hanya membawa kode P. Setiap satelit mentransmisikan kode yang unik sehingga penerima (receiver GPS) dapat mengidentifikasi sinyal dari setiap satelit. Pada saat fitur ”Anti-Spoofing” diaktifkan, maka kode P akan dienkripsi dan selanjutnya dikenal sebagai kode P(Y) atau kode Y.
Ketika sinyal melalui lapisan atmosfer, maka sinyal tersebut akan terganggu oleh konten dari atmosfer tersebut. Besarnya gangguan di sebut bias. Bias sinyal yang ada utamanya terdiri dari 2 macam yaitu bias ionosfer dan bias troposfer. Bias ini harus diperhitungkan (dimodelkan atau diestimasi atau melakukan teknik differencing untuk metode diferensial dengan jarak baseline yang tidak terlalu panjang) untuk mendapatkan solusi akhir koordinat dengan ketelitian yang baik. Apabila bias diabaikan maka dapat memberikan kesalahan posisi sampai dengan orde meter.
ERROR SOURCES GPS
Pada sistem GPS terdapat beberapa kesalahan komponen sistem yang akan mempengaruhi ketelitian hasil posisi yang diperoleh. Kesalahan-kesalahan tersebut contohnya kesalahan orbit satelit, kesalahan jam satelit, kesalahan jam receiver, kesalahan pusat fase antena, dan multipath. Hal-hal lainnya juga ada yang mengiringi kesalahan sistem seperti efek imaging, dan noise. Kesalahan ini dapat dieliminir salah satunya dengan menggunakan teknik differencing data.
METODA PENENTUAN POSISI GPS
Metoda penentuan posisi dengan GPS pertama-tama terbagi dua, yaitu metoda absolut, dan metoda diferensial. Masing-masing metoda kemudian dapat dilakukan dengan cara real time dan atau post-processing. Apabila obyek yang ditentukan posisinya diam maka metodenya disebut Statik. Sebaliknya apabila obyek yang ditentukan posisinya bergerak, maka metodenya disebut kinematik. Selanjutnya lebih detail lagi kita akan menemukan metoda-metoda seperti SPP, DGPS, RTK, Survei GPS, Rapid statik, pseudo kinematik, dan stop and go, serta masih ada beberapa metode lainnya.
KETELITIAN YANG DIPEROLEH DARI SISTEM GPS
Untuk aplikasi sipil, GPS memberikan nilai ketelitian posisi dalam spektrum yang cukup luas, mulai dari meter sampai dengan milimeter. Sebelum mei 2000 (SA on) ketelitian posisi GPS metode absolut dengan data psedorange mencapai 30 – 100 meter. Kemudian setelah SA off ketelitian membaik menjadi 3 – 6 meter. Sementara itu Teknik DGPS memberikan ketelitian 1-2 meter, dan teknik RTK memberikan ketelitian 1-5 sentimeter. Untuk posisi dengan ketelitian milimeter diberikan oleh teknik survai GPS dengan peralatan GPS tipe geodetik dual frekuensi dan strategi pengolahan data tertentu.
APLIKASI APLIKASI TEKNOLOGI GPS
GPS (Global Positioning System) adalah sistem satelit navigasi yang paling populer dan paling banyak diaplikasikan di dunia pada saat ini, baik di darat, laut, udara, maupun angkasa. Disamping aplikasi-aplikasi militer, bidang-bidang aplikasi GPS yang cukup marak saat ini antara lain meliputi survai pemetaan, geodinamika, geodesi, geologi, geofisik, transportasi dan lain lain.
5. STEREO.
Stereoskop adalah alat untuk pengamatan tiga dimensional atas foto udara yang bertampalan. Inti dari stereoskop ini adalah terdiri dari lensa, atau kombinasi antara lensa, cermin, dan prisma. Dalam interpretasi citra, stereoskop menjadi alat utama untuk foto udara atau citra tertentu lainnya yang dapat menimbulkan perwujudan tiga dimensional.
Beberapa tipe stereoskop yang ada menggunakan lensa atau paduan lensa, cermin, dan prisma. Stereoskop lensa mudah dibawa, relatif kecil, dan murah. Kaki-kakinya dpt dilipat. Jarak lensa dpt disesuaikan antara 45 – 75 mm sesuai kemampuan akomodasi mata pengamat. Perbesaran yang dapat dilihat adalah 2 hingga 4 kali. Foto udara yg diamati harus berdekatan dan daerah yang dapat diamati amat terbatas.
Penglihatan stereoskopis secara khusus diperlukan pada proses interpretasi foto udara. Orang yang memiliki penglihatan sangat lemah pd salah satu matanya mungkin tdk dpt melihat secara stereoskopis. Efek ini memungkinkan kita untuk melihat 3 dimensi. Diperoleh dengan melihat foto udara yang bertampalan atau stereogram.
ALAT-ALAT YANG DIGUNAKAN
o Pasangan foto yg bertampalan atau stereogram
Pasangan foto yang bertampalan terdiri dari 2 foto yang berdekatan, yang bertampalan (minimal 50% daerah yang sama) pada garis terbang yang sama. Stereogram merupakan sepasang foto udara yang stereoskopis (pasangan foto yang sudah diorientasikan secara benar yang mencakup daerah yang sama).
Langganan:
Posting Komentar (Atom)
Tidak ada komentar:
Posting Komentar